Индекс активности участника

Окисление субстрата кислородом воздуха в клетке это не одноэтапный процесс, а несколько последовательных химических реакций. Все вместе их часто называют дыхательной цепью. У "ее, как у всякой цепи, два конца-один называется кислородным, другой субстратным. Это позволяет сопоставить процессы на кислородном электроде топливного элемента с кислородным концом цепи, а события на водородном электроде - с субстратным концом дыхательной цепи.


Важное преимущество таких биологических источников энергии состоит также в том, что они не только используют возобновляемые источники сырья, но и не загрязняют окружающую среду, так как включаются в природный кругооборот веществ значительно легче, чем любой другой источник энергии, кроме, может быть, Солнца. Схема топливного элемента. Молекулы газообразного водорода на водородном электроде распадаются на ионы (Н+) и электроны (е-), которые сообщают электроду отрицательный заряд. На кислородном электроде молекулы газообразного кислорода, реагируя с водой и забирая электроны от электрода, сообщают ему положительный заряд, при этом образуются ионы гидроксила (ОН ). По проводу, соединяющему оба электрода, течет тон, который используется для выполнения полезной работы. Схема топливного элемента Схема клеточного дыхания Схема клеточного дыхания. Из пищи (белков, жиров, углеводов) на предварительном этапе образуются дву-углеродные фрагменты (ацетилы), которые, сгорая, превращаются в угольную кислоту и водород, подсоединенный к переносчику (НАД. Н:). При этом почти вся химическая энергия передается водороду. На следующем этапе (в дыхательной цепи) водород распадается на водородный ион и электрон, который с помощью фермвн. та цитохромоксидазы присоединяется к кислороду с образованием иона гидроксила. При движении электрон? по дыхательной цепи синтезируются нужные организму богатые энергией вещества - макроэрги, как видим, у клеточного дыхания и топливного элемента немало общего. Схема гипотетического устройства, использующего биологический метод получения водорода для топливных элементов. Живая клетка, которая находится в анаэробных (бескислородных) условиях, тем не менее выполняет свою обычную работу - генерирует водород за счет распада пищевых веществ и воды. Специальное вещество (например, молочная кислота), способное проходить через клеточные оболочки, переносит этот водород к водородному электроду топливного элемента. Остальные процессы идут так же. как в классическом водородно-кислородном элементе.

21.05.2024

Комментарии: 3
Дальше

Сложные предложения

Схема такого устройства показана на цветной вкладке. Взвесь каких-то одноклеточных организмов, например, дрожжей, находится в жидкости, содержащей питательные вещества, в герметичном сосуде. Само по себе пребывание в анаэробных условиях резко активирует обмен веществ, клетка активно поглощает пищу, превращая ее в угольную кислоту и водород, присоединенный к переносчику. А тот, взаимодействуя с пировиноградной кислотой, передает ей два атома водорода. Образуется молочная кислота, которая тут же проникает из клетки наружу и окисляется на электроде, превращаясь обратно в пировиноградную кислоту. При этом остаются на электроде два иона водорода и два электрона, сообщая ему отрицательный электрический заряд. Пировиноградная кислота возвращается в клетку, где снова участвует в том же цикле превращений.


Окисление субстрата кислородом воздуха в клетке это не одноэтапный процесс, а несколько последовательных химических реакций. Все вместе их часто называют дыхательной цепью. У "ее, как у всякой цепи, два конца-один называется кислородным, другой субстратным. Это позволяет сопоставить процессы на кислородном электроде топливного элемента с кислородным концом цепи, а события на водородном электроде - с субстратным концом дыхательной цепи.

21.05.2024

Комментарии: 1
Дальше

Встроенный запуск словаря

Познакомимся с устройством кислородного конца дыхательной цепи. Как в живой клетке, так и в топливном элементе все химические реакции происходят либо в водной фазе, либо "а границе жидкой и твердой фаз, поэтому участвовать в реакции может только кислород, растворенный в воде. Но как и все газы, кислород плохо растворим, поэтому возникают "транспортные трудности", а значит, и многочисленные способы их преодоления. Самое простое транспортное средство - это система тонких трубочек-трахей, по которым газ поступает непосредственно в зону реакции. Для этого в кислородных электродах устраивают два типа пор: одни смачивающиеся (гидрофильные) - по ним проникает водный раствор, другие несмачивающиеся (гидрофобные) - по ним внутрь электрода проникает газ.


Закономерен вопрос: а нужен ли переносчик на такие микроскопические расстояния? Транспортировать водород так же, как гемоглобин переносит кислород, действительно нет необходимости, поскольку он образуется тут же в клетке, но дело в том, что НАД переносчик совсем в другом смысле. Ведь гемоглобин транспортирует молекулярный кислород, поступающий из воздуха, и в такой же форме отдает его тканям. Молекулярного же водорода в клетках нет, поэтому НАД - это те клещи или щипцы, которые "выдирают" атомы водорода из окисляемых молекул пиши. За каждый заход молекула НАД забирает по два атома водорода, одновременно способствуя тому, чтобы один из них распался на две заряженные частицы - протон и электрон, причем отрицательный электрон остается присоединенным к молекуле переносчика, а положительный протон (ион водорода) переходит в раствор. В дальнейшем движении по дыхательной цепи распадается и другой атом водорода. В процессе движения электронов по дыхательной цепи происходит накопление энергии в форме веществ, которые называются макроэргами. Дальше организм использует их по мере потребности для удовлетворения конкретных нужд - мышечного сокращения, накопления ионов в клетках и т. д.

21.05.2024

Комментарии: 1
Дальше

Введена система ученых званий

Схема такого устройства показана на цветной вкладке. Взвесь каких-то одноклеточных организмов, например, дрожжей, находится в жидкости, содержащей питательные вещества, в герметичном сосуде. Само по себе пребывание в анаэробных условиях резко активирует обмен веществ, клетка активно поглощает пищу, превращая ее в угольную кислоту и водород, присоединенный к переносчику. А тот, взаимодействуя с пировиноградной кислотой, передает ей два атома водорода. Образуется молочная кислота, которая тут же проникает из клетки наружу и окисляется на электроде, превращаясь обратно в пировиноградную кислоту. При этом остаются на электроде два иона водорода и два электрона, сообщая ему отрицательный электрический заряд. Пировиноградная кислота возвращается в клетку, где снова участвует в том же цикле превращений.


Формально живые организмы решают ту же задачу, что и топливные элементы,- окисляют органические соединения (то есть пищу), а освободившаяся энергия преобразуется в механическую (движение) или электрическую (нервный импульс). Интересно, что в процессе обмена веществ из пищи получаются более ценные в энергетическом отношении продукты (происходит обогащение биологического "топлива"), и энергетическая фабрика клетки получает приспособленный к ее нуждам высококалорийный продукт.

21.05.2024

Свежие комментарии:

Re: Урок 2: Фонетическая система английского языка

Jane Eyre: Спасибо. Всё отлично написано. Только про звук əː непонятно, он как читается? И ещё в транскрипциях…

Re: Урок 1: Основные грамматические понятия

Inky: Спасибо за то, что вы делаете. Всё так доступно и понятно написано. Надеюсь с вашей помощью  …

Новое на форуме:

Re: Сдача экзамена на TOEFL или IELTS

Annitka2006: Я готовилась каждый вечер с репетитором английского по скайпу Ольгой Андреевой. Мы занимались 5 дней…

Re: Сдача экзамена на TOEFL или IELTS

Николай92: У кого успешный IELTS, если вы из Москвы, с какими преподавателями и сколько занимались? И стоимость…

Re: Кто как и как учит английские слова

Sharky: Смотрю фильмы, любые, с субтитрами или без, незнакомые слова забиваю  в словарь. Иногда бывает лень…
Яндекс цитирования Powered by MyPagerank.Net
RSS-подписка:
=