Индекс активности участника

Известно, что из клеток можно извлекать отдельные ферменты и использовать их в технологических процессах, это давно делается, например, в виноделии, хлебопечении, сыроварении... Однако извлечь комплексно несколько десятков ферментов, чтобы перерабатывать глюкозу в водород, связанный с переносчиком, практически невозможно. С другой стороны, также невозможно извлекать связанный водород из клеток, так как клеточные оболочки для него непроницаемы. Остается одно: подобрать какое-либо вещество, способное проходить через клеточные оболочки и выносить вместе с собой атомы водорода. Подобные транспортные вещества известны биохимикам, их часто называют "челноками", и они участвуют во многих жизненных процессах.


Формально живые организмы решают ту же задачу, что и топливные элементы,- окисляют органические соединения (то есть пищу), а освободившаяся энергия преобразуется в механическую (движение) или электрическую (нервный импульс). Интересно, что в процессе обмена веществ из пищи получаются более ценные в энергетическом отношении продукты (происходит обогащение биологического "топлива"), и энергетическая фабрика клетки получает приспособленный к ее нуждам высококалорийный продукт.

18.05.2024

Комментарии: 3
Дальше

Сложные предложения

В силу некоторых обстоятельств, о которых сейчас речи нет, использование такого "челнока" сопряжено с ухудшением КПД, поэтому оно может оправдать себя лишь в особых обстоятельствах. Так, при некоторых заболеваниях сердца используются кардиостимуляторы, управляющие сокращениями сердечной мышцы. Вместе с кардиостимулятором в тело пациента вживляют и электрическую батарейку - источник тока. Однако в организме, особенно больном, всегда много молочной кислоты, и она могла бы, окисляясь на электроде топливного элемента, приводить в действие кардиостимулятор сердца, который получил бы тем самым неограниченный источник энергии.


Кровеносные капилляры образуют очень густую сеть, такую, что расстояние между ними в наиболее активных зонах дыхания измеряется всего десятками микрометров. Тем не менее между капиллярами и теми частями клеток, которые непосредственно потребляют кислород, всегда остается определенный участок, который молекулы газа преодолевают путем диффузии, чья скорость, в общем, пропорциональна растворимости, которая, как мы уже отмечали, у кислорода очень мала. В тканях есть специальные вещества, способные обратимо связывать кислород, увеличивая тем самым его растворимость и ускоряя диффузию. Эти вещества по своей природе близки к гемоглобину.

18.05.2024

Комментарии: 1
Дальше

Встроенный запуск словаря

Формально живые организмы решают ту же задачу, что и топливные элементы,- окисляют органические соединения (то есть пищу), а освободившаяся энергия преобразуется в механическую (движение) или электрическую (нервный импульс). Интересно, что в процессе обмена веществ из пищи получаются более ценные в энергетическом отношении продукты (происходит обогащение биологического "топлива"), и энергетическая фабрика клетки получает приспособленный к ее нуждам высококалорийный продукт.


Так уж сложилась история техники, что сейчас большую часть потребляемой человечеством энергии получают, сжигая уголь, нефть и газ в малоэффективных тепловых машинах. В силу "неумолимых" физических законов основной способ повышения коэффициента полезного действия (КПД) таких машин - это увеличение температуры. А чтобы температура сгорания была высокой, нужны калорийные виды топлива - такие, в состав которых входят лишь окисляемые элементы - углерод и водород, а балласта - кислорода, азота и других негорючих элементов - должно быть как можно меньше. По этой причине дешевые и, главное, возобновляемые виды топлива - дрова и торф-находят мало применения.

18.05.2024

Комментарии: 1
Дальше

Введена система ученых званий

У некоторых живых организмов, например, бабочек и пауков, существует аналогичная система дыхательных трубочек-трахей, по которым кислород поступает непосредственно к органам дыхания. Если бы на нашей планете атмосфера состояла из чистого кислорода, то дыхательные трубочки-трахеи могли бы удовлетворить потребности и более крупных организмов (по мере расходования кислорода в трахеи поступали бы его новые порции). Однако кислород занимает лишь пятую часть воздуха нашей планеты, а остальные приходятся на азот. По этой причине, если дыхание интенсивное, а трубка длинная, весь кислород расходуется, и трахея оказывается заполненной азотом. Нужен какой-то более эффективный механизм. У более высокоорганизованных животных кислород поступает к тканям с гемоглобином, это в десятки раз увеличивает транспортные возможности жидкости. Например, в крови человека с гемоглобином связано примерно в 100 раз больше кислорода, нежели растворено в самой жидкости. Несмотря на это, возможности гемоглобина как транспортного средства большинству техников должны показаться очень скромными. Так, 1 молекула гемоглобина при самых благоприятных обстоятельствах может перенести 4 молекулы кислорода, но поскольку гемоглобин - это белок с молекулярной массой 64000 даль-тон, а молекулярная масса кислорода всего 32 дальтона, то оказывается, что полезная нагрузка составляет всего одну пятисотую. Ситуация примерно такая же, как если бы человек, весящий 80 килограммов, поехал в гости на сорокатонном паровозе! Обычно же ситуация еще хуже - в реальных условиях полезная нагрузка составляет одну тысячную или еще меньше. Выручает лишь быстрая оборачиваемость - в организме человека эритроцит в среднем за одну минуту успевает три раза загрузиться кислородом в легких и отдать его тканям.


Гемоглобин, как известно, не просто растворен в крови, ко находится в красных кровяных тельцах - эритроцитах. Для этого есть определенные основания. Дело в том, что кровь содержит 14-16 процентов гемоглобина, и если бы это был обычный раствор, то образовалась бы густая вязкая масса, которую очень трудно было бы протолкнуть по кровеносным сосудам. Благодаря же красным кровяным шарикам, каждый из которых представляет собой как бы каплю сгущенного гемоглобина, кровь сохраняет и достаточную подвижность и высокую способность связывать кислород.

18.05.2024

Свежие комментарии:

Re: Урок 2: Фонетическая система английского языка

Jane Eyre: Спасибо. Всё отлично написано. Только про звук əː непонятно, он как читается? И ещё в транскрипциях…

Re: Урок 1: Основные грамматические понятия

Inky: Спасибо за то, что вы делаете. Всё так доступно и понятно написано. Надеюсь с вашей помощью  …

Новое на форуме:

Re: Сдача экзамена на TOEFL или IELTS

Annitka2006: Я готовилась каждый вечер с репетитором английского по скайпу Ольгой Андреевой. Мы занимались 5 дней…

Re: Сдача экзамена на TOEFL или IELTS

Николай92: У кого успешный IELTS, если вы из Москвы, с какими преподавателями и сколько занимались? И стоимость…

Re: Кто как и как учит английские слова

Sharky: Смотрю фильмы, любые, с субтитрами или без, незнакомые слова забиваю  в словарь. Иногда бывает лень…
Яндекс цитирования Powered by MyPagerank.Net
RSS-подписка:
=